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ABSTRACT

An unified approach for solving both compressible and incompressible flows has been

investigated in this study. The difference in CFD code development between incompressible

and compressible flows is due to the mathematical characteristics. However, if one can

modify the continuity equation for incompressible flows by introducing

pseudocompressibility, the governing equations for incompressible flows would have the

same mathematical characters as compressible flows. The application of a compressible flow

code to solve incompressible flows becomes feasible. Among numerical algorithms

developed for compressible flows, the Centered Total Variation Diminishing (CTVD)

schemes possess better mathematical properties to damp out the spurious oscillations while

providing high-order accuracy for high speed flows. It leads us to believe that CTVD

schemes can equally well apply to solve incompressible flows.

In this study, the governing equations for incompressible flows include continuity equation

and momentum equations. The continuity equation is modified by adding a time-derivative

of the pressure term containing the artificial compressibility. The modified continuity

equation together with the unsteady momentum equations forms a hyperbolic-parabolic type

of time-dependent system of equations. Thus, the CTVD schemes can be implemented. In

addition, the boundary conditions including physical and numerical boundary conditions must

be properly specified to obtain accurate solution.

The CFD code for this research is currently in progress. Flow past a circular cylinder will

be used for numerical experiments to determine the accuracy and efficiency of the code

before applying this code to more specific applications.
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INTRODUCTION

GOVERNING EQUATIONS

The two-dimensional incompressible-flowequations are as follows:
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where u and v are velocity components in the x and y directions, respectively. P is the static

pressure, p denotes the dynamic viscosity. The incompressible governing equations (1)

through (3) are mathematically classified as elliptic partial differential equations while

compressible governing equations are hyperbolic partial differential equations. Because of

the mathematical difference between the hyperbolic and elliptic partial differential equations,

the well-developed numerical schemes for compressible flows can not apply directly to solve

incompressible flows. However, if one modifies the continuity equation given in equation

(1) by introducing artificial compressibility, the resulting incompressible governing equations

are of hyperbolic type. The modified continuity equation is given in equation (4).

8/9+ 8_ u+ ap v=0 (4)
at ax ay

where 13 is known as the pseudocompressibility constant.

Equations (2) through (4) are transformed into generalized curvilinear coordinates, _ and
11 given by
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(5)

n =n ¢x,y,_ (6)

The governing equations are then given by
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(8)

[ 13(u-C)
E= l--JpuU +_xP

qP_+_7

(9)

F=l_ puV+IIxP

qp_÷n7

(10)

o 12+ 2 +

JJI ,,*2+,.2, +

(11)

8-4



2 2

2 2

(12)

U and V are contravariant velocities. Consequently, a chosen numerical scheme developed

for compressible flows can be used to solve incompressible flows.

NUMERICAL SCHEME

Numerical algorithms recently developed for high-speed flows have demonstrated the

superiority in reducing CPU time while providing the high-order accuracy. The numerical

algorithms are based on the finite volume approach. A fourth-order centered scheme

(CTVD) developed by Sanders and Li is used to approximate spatial derivatives in the

resulting hyperbolic equations. The CTVD differencing proposed in this study has distinctive

desired properties in overcoming the spurious oscillations and odd- and even-point

decoupling in the solution which are caused by the use of central differencing. In addition,

the implementation of these algorithms is simple and no tuning parameters are needed.

By applying the centered differencing to the transformed equations a system of time

dependent differential equations is obtained. The system of differential equations can be

integrated by a number of methods to obtain a converged solution. In this study, the

Runge-Kutta and ADI methods are used in the code development, respectively.

When the algorithms are applied to solve the incompressible flows, a set of corresponding

boundary conditions must be specified including analytical boundary conditions and

numerical boundary conditions as well. It is crucial to the accuracy of the solution.

The development of numerical code based on CTVD is still in progress. It will take about

one year to complete the code development. Numerical experiments will follow when the

code is completed. Two-dimensional problems will be investigated first to study the accuracy

and efficiency of the numerical algorithms. Then the code will be extensively used to solve

three-dimensional incompressible flow problems with application to bay and nearshore
circulation, and others.

CONCLUDING REMARKS

The research to develop an accurate and efficient CFD code for incompressible flows using

the algorithms that are originally developed for compressible flows is a viable approach. The

significant achievements for compressible flows in code development have been providing
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a valuable CFD tool for those who are interested in study phenomena of incompressible
flows.

8-6


